Finding Errors in .NET

with
Feedback-Directed Random Testing

Carlos Pacheco (MIT)
Shuvendu Lahiri (Microsoft)
Thomas Ball (Microsoft)

July 22,2008

Feedback-directed random testing (FDRT)

classes
under test
4 feedback-directed failing
random test test cases
properties generator
to check

Feedback-directed random testing (FDRT)

classes
under test
4 feedback-directed failing
random test test cases
properties generator
to check

java.util.Collections
java.util.ArrayList
java.util.TreeSet
java.util.LinkedList

Feedback-directed random testing (FDRT)

classes
under test
4 feedback-directed failing
random test test cases
properties generator
to check

Reflexivity of equality:

Vv o !'= null : o.equals(o) == true

java.util.Collections
java.util.ArrayList
java.util.TreeSet
java.util.LinkedList

Feedback-directed random testing (FDRT)

classes
under test
4 feedback-directed failing
random test test cases
properties generator
to check

public void test() {

Reflexivity of equality:

Object o = new Object();

ArrayList a = new ArrayList();

a.add(o);

TreeSet ts = new TreeSet(a);

Set us = Collections.unmodifiableSet(ts);

Vv o !'= null : o.equals(o) == true

java.util.Collections
java.util.ArrayList
java.util.TreeSet

java.util.LinkedList // Fails at runtime.

assertTrue(us.equals(us));

Feedback-Directed Random Test Generation
Pacheco, Lahiri, Ball and Ernst
ICSE 2007

Technique overview

* (reates method sequences incrementally
* Uses runtime information to guide the generation

error exceptio
revealing n
throwing
output as tests discarded used to create larger
sequences

* Avoids illegal inputs

Prior experimental evaluation (ICSE 2007)

Compared with other techniques

— Model checking, symbolic execution, traditional random testing

On collection classes (lists, sets, maps, etc.)
— FDRT achieved equal or higher code coverage in less time

On a large benchmark of programs (750KLOC)

— FDRT revealed more errors

Goal of the Case Study
* Evaluate FDRT’s effectiveness in an industrial setting

— Errorrevealing effectiveness
— Cost effectiveness
— Usability

* These are important questions to ask about any test
generation technique

Case study structure

Asked engineers from a test team at Microsoft to use
FDRT on their code base over a period of 2 months.

We provided
— Atool implementing FDRT
— Technical support for the tool (bug fixes bugs, feature requests)

We met on a regular basis (approx. every 2 weeks)
— Asked team for experience and results

Randoop

NET
assembly

\ 4

\/

* Properties checked:

FDRT

> Failing C# Test Cases
!

— sequence does not lead to runtime assertion violation

— sequence does not lead to runtime access violation

— executing process should not crash

Subject program

* Test team responsible for a critical .NET component
100KLOGC, large API, used by all .NET applications

* Highly stable, heavily tested
— High reliability particularly important for this component
— 200 man years of testing effort (40 testers over 5 years)
— Test engineer finds 20 new errors per year on average
— High bar for any new test generation technique

* Many automatic techniques already applied

10

Discussion outline

* Results overview

* Error-revealing effectiveness
— Kinds of errors, examples
— Comparison with other techniques

* Cost effectiveness
— Earlier/later stages

11

Case study results: overview

Human time spent 15 hours
interacting with Randoop

CPU time running Randoop RERleIIsS

Total distinct method 4 million
sequences

New errors revealed 30

12

Error-revealing effectiveness

* Randoop revealed 30 new errors in 15 hours of human effort.

(i.e. 1 new per 30 minutes)

This time included:
interacting with Randoop
inspecting the resulting tests
discarding redundant failures

* Atest engineer discovers on average 1 new error per 100
hours of effort.

13

Example error 1: memory management

* Componentincludes memory-managed and native code

* If native call manipulates references, must inform garbage
collector of changes

* Previously untested path in native code reported a new
reference to an invalid address

* This error was in code for which existing tests achieved
100% branch coverage

14

Example error 2: missing resource string

When exception is raised, component finds message in
resource file

Rarely-used exception was missing message in file
Attempting lookup led to assertion violation

Two errors:

— Missing message in resource file
— Errorin tool that verified state of resource file

15

Errors revealed by expanding Randoop's scope

* Test team also used Randoop’s tests as input to other tools
* Used test inputs to drive other tools

* Expanded the scope of the exploration and the types of
errors revealed beyond those that Randoop could find.
For example, team discovered concurrency errors this way

16

Discussion outline

* Results overview

* Error-revealing effectiveness

_—) -

Kinds of errors, examples
Comparison with other techniques

 (Cost effectiveness

Earlier/later stages

17

Traditional random testing

Randoop found errors not caught by fuzz testing
Fuzz testing’s domain is files, stream, protocols
Randoop’s domain is method sequences

Think of Randoop as a smart fuzzer for APIs

18

Symbolic execution

Concurrently with Randoop, test team used a method
sequence generator based on symbolic execution
— Conceptually more powerful than FDRT

Symbolic tool found no errors over the same period of time, on
the same subject program

Symbolic approach achieved higher coverage on classes that
— (Can be tested in isolation
— Do not go beyond managed code realm

19

Discussion outline

* Results overview

* Error-revealing effectiveness
— Kinds of errors, examples
— Comparison with other techniques

- Cost effectiveness

— Earlier/later stages

20

The Plateau Effect

* Randoop was cost effective during the span of the study

* After this initial period of effectiveness, Randoop ceased to
reveal errors

* After the study, test team made a parallel run of Randoop
— Dozens of machines, hundreds of machine hours
— Each machine with a different random seed
— Found fewer errors than it first 2 hours of use on a single machine

21

Overcoming the plateau

* Reasons for the plateau
— Spends majority of time on subset classes
— (Cannot cover some branches

* Work remains to be done on new random strategies

* Hybrid techniques show promise
— Random/symbolic
— Random/enumerative

22

Conclusion

* Feedback-directed random testing
— Effective in an industrial setting

* Randoop used internally at Microsoft
— Added to list of recommended tools for other product groups
— Hasrevealed dozens more errors in other products

* Random testing techniques are effective in industry
— Find deep and critical errors
— Scalability yields impact

23

Randoop for Java

‘®006 Randoop for Java o

. Q { hltp:Hpeople,csail.mit.edufcpacheco;lmpfjrand{}Y)

* Google “randoop”

« Has been used in research
projects and courses

45— Randoop 1.2

The Randomized Unit Test
Generator for Java

- Version 1.2 jUSt released Publications Download User Manual Developer

Notes

What is Randoop?

* Randoop is 2an automatic test generator for Java. You feed it your Java classes, and it automatically creates unit
tests for you (in JUnit format).

Randoop generates unit tests using feedback-directed random test generation. In 2 nutshell, this technique
randomly--but smartly--generates sequences of methods and constructor invocations for the classes under test,
and uses the sequences to create tests. Randoop also executes the sequences, and uses the results of the

execution to create assertions for the sequences that capture the behavior or your program and that catch bugs.

Randoop has created tests that find previously unkwon errors even in widely-used libraries including Sun
and IBM's JDKs. A .NET version of Randoop, used internally at Microsoft, has been used successfully by a team of
test engineers to find errors in a core .NET component that had been tested for years. Randoop was able to
achieve these results by combining random test generation with test execution, resulting in a highly effective test
generation technigue.

To learn more about Randoop, follow the above links, which include the download site, manual, and a list of publcations
delving more deeply into the technical aspects of the tool and its uses in both research and industry.

System Requirements

We have tested Randoop using Java 5 or greater under Linux and Mac 05 X {(1.14).

Because it is written in Java, Randoop should work on Java 5 or greater under Windows, but we haven't tested it. We
welcome feedback on user experiences under Windows.

What's new

_‘

</rl

