
Finding Errors in .NET
with
Feedback-Directed Random Testing

Carlos Pacheco (MIT)

Shuvendu Lahiri (Microsoft)

Thomas Ball (Microsoft)

July 22, 2008

Feedback-directed random testing (FDRT)

classes
under test

properties
to check

feedback-directed
random test
generator

failing
test cases

Feedback-directed random testing (FDRT)

classes
under test

properties
to check

feedback-directed
random test
generator

failing
test cases

java.util.Collections
java.util.ArrayList
java.util.TreeSet
java.util.LinkedList
...

Feedback-directed random testing (FDRT)

classes
under test

properties
to check

feedback-directed
random test
generator

failing
test cases

java.util.Collections
java.util.ArrayList
java.util.TreeSet
java.util.LinkedList
...

Reflexivity of equality:

o != null : o.equals(o) == true

Feedback-directed random testing (FDRT)

classes
under test

properties
to check

feedback-directed
random test
generator

failing
test cases

java.util.Collections
java.util.ArrayList
java.util.TreeSet
java.util.LinkedList
...

Reflexivity of equality:

o != null : o.equals(o) == true

public void test() {

Object o = new Object();
ArrayList a = new ArrayList();
a.add(o);
TreeSet ts = new TreeSet(a);
Set us = Collections.unmodifiableSet(ts);

// Fails at runtime.
assertTrue(us.equals(us));

}

Technique overview

• Creates method sequences incrementally

• Uses runtime information to guide the generation

• Avoids illegal inputs

5

Feedback-Directed Random Test Generation
Pacheco, Lahiri, Ball and Ernst
ICSE 2007

normalerror
revealing

exceptio
n

throwing

output as tests used to create larger
sequences

discarded

Prior experimental evaluation (ICSE 2007)

6

• Compared with other techniques
− Model checking, symbolic execution, traditional random testing

• On collection classes (lists, sets, maps, etc.)
− FDRT achieved equal or higher code coverage in less time

• On a large benchmark of programs (750KLOC)
− FDRT revealed more errors

Goal of the Case Study

• Evaluate FDRT’s effectiveness in an industrial setting

− Error-revealing effectiveness

− Cost effectiveness

− Usability

• These are important questions to ask about any test
generation technique

7

Case study structure

• Asked engineers from a test team at Microsoft to use
FDRT on their code base over a period of 2 months.

• We provided
− A tool implementing FDRT

− Technical support for the tool (bug fixes bugs, feature requests)

• We met on a regular basis (approx. every 2 weeks)
− Asked team for experience and results

8

Randoop

FDRT

.NET

assembly Failing C# Test Cases

• Properties checked:

− sequence does not lead to runtime assertion violation

− sequence does not lead to runtime access violation

− executing process should not crash

9

Subject program

• Test team responsible for a critical .NET component
100KLOC, large API, used by all .NET applications

• Highly stable, heavily tested
− High reliability particularly important for this component

− 200 man years of testing effort (40 testers over 5 years)

− Test engineer finds 20 new errors per year on average

− High bar for any new test generation technique

• Many automatic techniques already applied

10

Discussion outline

• Results overview

• Error-revealing effectiveness
− Kinds of errors, examples

− Comparison with other techniques

• Cost effectiveness
− Earlier/later stages

11

Case study results: overview

12

Human time spent
interacting with Randoop

15 hours

CPU time running Randoop 150 hours

Total distinct method
sequences

4 million

New errors revealed 30

Error-revealing effectiveness

• Randoop revealed 30 new errors in 15 hours of human effort.
(i.e. 1 new per 30 minutes)

This time included:

interacting with Randoop

inspecting the resulting tests

discarding redundant failures

• A test engineer discovers on average 1 new error per 100
hours of effort.

13

Example error 1: memory management

• Component includes memory-managed and native code

• If native call manipulates references, must inform garbage
collector of changes

• Previously untested path in native code reported a new
reference to an invalid address

• This error was in code for which existing tests achieved
100% branch coverage

14

Example error 2: missing resource string

• When exception is raised, component finds message in
resource file

• Rarely-used exception was missing message in file

• Attempting lookup led to assertion violation

• Two errors:
− Missing message in resource file

− Error in tool that verified state of resource file

15

Errors revealed by expanding Randoop's scope

• Test team also used Randoop’s tests as input to other tools

• Used test inputs to drive other tools

• Expanded the scope of the exploration and the types of
errors revealed beyond those that Randoop could find.

For example, team discovered concurrency errors this way

16

Discussion outline

• Results overview

• Error-revealing effectiveness
− Kinds of errors, examples

− Comparison with other techniques

• Cost effectiveness
− Earlier/later stages

17

Traditional random testing

• Randoop found errors not caught by fuzz testing

• Fuzz testing’s domain is files, stream, protocols

• Randoop’s domain is method sequences

• Think of Randoop as a smart fuzzer for APIs

18

Symbolic execution

• Concurrently with Randoop, test team used a method
sequence generator based on symbolic execution
− Conceptually more powerful than FDRT

• Symbolic tool found no errors over the same period of time, on
the same subject program

• Symbolic approach achieved higher coverage on classes that
− Can be tested in isolation

− Do not go beyond managed code realm

19

Discussion outline

• Results overview

• Error-revealing effectiveness
− Kinds of errors, examples

− Comparison with other techniques

• Cost effectiveness
− Earlier/later stages

20

The Plateau Effect

• Randoop was cost effective during the span of the study

• After this initial period of effectiveness, Randoop ceased to
reveal errors

• After the study, test team made a parallel run of Randoop
− Dozens of machines, hundreds of machine hours

− Each machine with a different random seed

− Found fewer errors than it first 2 hours of use on a single machine

21

Overcoming the plateau

• Reasons for the plateau
− Spends majority of time on subset classes

− Cannot cover some branches

• Work remains to be done on new random strategies

• Hybrid techniques show promise
− Random/symbolic

− Random/enumerative

22

Conclusion

• Feedback-directed random testing
− Effective in an industrial setting

• Randoop used internally at Microsoft
− Added to list of recommended tools for other product groups

− Has revealed dozens more errors in other products

• Random testing techniques are effective in industry
− Find deep and critical errors

− Scalability yields impact

23

Randoop for Java

24

• Google “randoop”

• Has been used in research
projects and courses

• Version 1.2 just released

